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A computer-based method for treating the motion of charged and neutral particles

called the Phase Space Time Evolution method (PSTE) has been developed. This technique,

instead of utilizing the integro-differential transport equation and solving it by com-

puter methods, makes direct use of the computer by employing its bookkeeping capacity to

literally keep track of the time development of a phase space distribution of particles.

This method is applied in this paper to a study of the penetration of electrons. In

this application use is made of the continuous slowing down approximation for energy de-

gradation and the Goudsmit-Saunderson distribution for multiple scattering. The specif-

ic problem investigated considers a 1 MeV beam of electrons normally incident on a semi-

infinite slab of aluminum. Results of the PSTE calculation for this problem are com-

pared on the basis of number transmission, energy spectrum and angular distribution as a

function of penetration with existing Monte Carlo calculations and experimental results.

The general agreement exhibited is good. In addition to the above, time-dependent PSTE

electron penetration results for the same problem are presented. The computer time re-

quired to make the PSTE calculation discussed here was approximately i0 minutes on the

CDC 6600 computer at the Brookhaven National Laboratory. This can be compared to a

Monte Carlo calculation on a similar machine which requires on the order of an hour or

more of computer time. As an added feature, the PSTE method generates deterministic and

time dependent results during the small amount of machine time it requires.
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Energy p

Position _i

Cosine of the polar angle with

respect to the X direction

Time

Time interval

Speed

Path length

Atomic number

Speed of light P_(U)

Rest mass energy G% (S)

X displacement

Energy interval N

Apportioning fraction

Position interval

p(uxlUi)

_s

Particle density

cosine of the polar angle of in-

cidence with respect to the X

direction

Angular probability density

function with respect to ux

given an incident direction _i

independent of incident and

scattered a_imuthal angle

Legendre Polynomial of index

Goudsmit-Saunderson distribution

expansion terms

Number of scatterers per unit

volume

Polar angle of scattering rela-

tive to an arbitrary incident

direction

*This work was performed under the auspices of the United States Atomic Energy

Commission.
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(continued)

Coulomb single scattering cross

section

Number transmission factor

Cosine interval

Current

Initial or incident energy

Function representing energy

spectrum

Function representing angular

distribution

Transmitted current

INTRODUCTION

When traversing even a thin layer of

matter, electrons engage in numerous col-

lisions which produce in most cases small

energy losses and deflections. In addi-

tion, they may undergo a relatively small

number of catastrophic collisions which

cause them to lose an appreciable fraction

of their energy and to scatter through a

large angle. The combined effect of all

collisions is a complex transport process

which requires an elaborate theory for de-

scription.

Monte Carlo methods of calculation

have been applied to electron shielding

calculations and in fact have been consid-

ered up to now the most accurate avail-

able, even though significant limitations

are recognized. As with other Monte Carlo

based calculations, the answers obtained

can only be known with an accuracy which

is governed by the statistical uncertainty

inherent in the stochastic nature of the

Monte Carlo method. Since individual

electron slowing down case histories can

be extremely complex, enormous amounts of

computer time may be required to generate

a statistically representative number of

individual histories. This is the case

even with the application of special tech-

niques adapting Monte Carlo to the re-

quirements of electron slowing down.

Another problem with the Monte Carlo ap-

proach is that it seems suitable for han-

dling only steady state or time indepen-

dent phenomena; at least the present au-

thors are unaware of any charged particle

Monte carlo calculations structured to

take into account time dependence.

A computer-based method of treating

the motion of charged or neutral particles

which overcomes these difficulties has

been introduced by Tavel and Zucker [1,2,

3,41. This technique, referred to as the

"Phase Space Time Evolution" (PSTE) method,

has been successful in the several neutron

transport problems it has thus far been ap-

plied to [41. The present paper will deal

with the first application of the PSTE

method to a charged particle problem,

namely, electron slowing down and shielding

in a semi-infinite medium.

The classical analytical approach to

transport calculations usually requires the

solving of an integro-differential equation

subject to boundary conditions established

by the problem of interest. The equation

itself is a mathematical representation of

the space-time evolution of a particle dis-

tribution which has been derived from the

application of continuity principles in

phase space. Instead of utilizing an in-

tegro-differential equation and solving it

by computer techniques, the PSTE method

makes direct use of the computer and em-

ploys its bookkeeping capacity to literally

keep track of the time development of the

phase space distribution.

The PSTE method was extended signifi-

cantly beyond the approach used for neutron

problems detailed in reference 4 in order

to investigate the transport of electrons.

This involved the addition of energy as a

third dimension of the phase space and the

use of multiple interaction theories for

particle transport.

Defininq the Three-Dimensional Digitized

Phase Space

The phase space within which the

flight of electrons can be traced which is

shown in Figure ! has Cartesian axes repre-

senting energy, E, position, X and cosine

of the polar angle with respect to the X

axis, Ux. The values of E range from the

maximum energy considered in the problem at

the origin to the lowest energy of inter-

est. The values of X can vary between any

desired one dimensional spatial limit. The

direction cosine, U , ranges from +i to -i.
X , .

The particle denslty In the phase

space is stored as the number of particles

per unit length in the element of phase

space between coordinates Xi_ 1 and X i with

energy E K and direction cosine Uxj-

SOLVING A PROBLEM

An initial particle distribution rep-

resents the state of the phase space

at time zero. The time iterative scheme

used in the calculation then traces the

movement of each element of phase space

for one time interval At. As illustrated

in Figure 2 during this time interval the

element of phase space is first relocated

in the E-X plane.
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Figure 2 Movement of an element of phase apace in the E-X plane.

In the calculations presented in this

paper continuous slowing down theory as

formulated by Rohrlich and Carlson [5],

has been used to determine the energy loss

of an element during At. Therefore, if

the particles represented by an element of

phase space are ass_ned to be traveling at

an initial speed, v_, corresponding to

their initial kinetlc energy, Ek, after a

small time interval, At, their final ki-

netic energy, EK' , is approximately given

by

= - Id k/dsIvk t (l)

where

Vk = c(l - [moC2/(Ek+mo c2)]_½ (2)

and IdEk/dS I is the stopping power given

in reference 5. By using the fact that

the radiative contribution to slowing down

is approximately given by [6]

-dEk/dS (ZEk/800), ZEk<<800

where -dEk/dS is the energy loss per unit

pathlength due to nonradiative collisions,

the energy loss from radiative collisions

has been included in eq. (I) by multiply-

ing IdEk/dS I by the factor [I+ZEk/800].

It should be mentioned here that the PSTE

method does not require the use of con-

tinuous slowing down. Straggling (energy

loss fluctuations) can also be handled

within the framework of this method. It

was intended, however, in the present ap-

plication to first see how well the method

performed without this complication, which

has been left for future work,

The technique employed to take into

.account the functional dependence on en-

ergy of dE/dS and v in eq. 1 divides the

time interval At into many smaller inter-

vals during which it is assumed that dE/

dS and v remain constant. After each time

increment the resulting final energy, Ek',

calculated is used to establish the values

of dE/dS and v to be used for the next

smaller time step. The total pathlength

traveled during At and the final energy

after At are obtained by'adding the con-

tributions of all the smaller time steps.

In addition to providing the total

path!ength traveled and the final energy,

the iterative procedure outlined for eq.

(i) also generates a_ average speed _k for

the time interval At. Once this value is

available the displacement of the phase

space element can be found through use of

the relation

_Sx = _k Pxj _t (3)

where _xj is the initial direction cosine

of the element and _S x is its displacement

after At. Once the X displacement has been

determined the new position of the element

X' is given by

X' = X + ASx- (4)
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An important assumption in the determina-

tion of the X displacement is that Ux does

not change appreciably during At. Th_s

approximation is very good for small values

of At. A constant Ux_ during At is assumed

mainly to avoid excessive computer time

which contributes little to the accuracy of

the electron PSTE calculation.

After an element of phase space has

been moved in the E-X plane, it must be

apportioned to the established grid lines

(digitized). A moments weighting technique

is used by the application presented in

this paper to carry out the apportionment

in energy.

The procedure followed first estab-

lishes the difference between the final

energy and the end points of the energy

grid interval into which the phase space

element being operated upon falls. Thus,

if some final energy of an element, E',
I

falls between E k -i and Ek', these dif-
g ! I

ferences are E k -i - E and E - Ek', re-

spectively. Once these values are found

they are divided by bE, the energy inter-

val between grid lines, to establish the

energy apportioning fractions (moments),

Fk ' _ Ek'-i - E' (5)
AE

and

E ' - Ek ' (6)
FK'-I = AE

A similar procedure is involved in

digitizing the final position coordinate.

Suppose that the original element inter-

sects the grid line X i , with its end points

falling on some XI<X i, and X2>X i , respec-

tively. Then the distance Xi,-X 1 and X 2-

X_ , divided by the increment of distance

between grid lines, AX, are the position

apportioning fractions,

F i, = Xi' - X1 (7)
_X

and

X_ - X i ,
Fi,+l = (8)

AX

The four fractions, Fk,_ I, and F k,

representing energy apportionment and F i,

and Fi,+l representing spatial distribu-

tion, determine the digitization or appor-

tionment in the E-X plane. Therefore, the

number of particles per unit length con-

tributed by the transported element h_ving

an initial particle density of p_ _ i,J
(neglecting for the moment angular _epen-

dence)

at Ek,_l, Ux j between Xi,_ 1 and X i,

is

Pk'-l,j,i' = Pk, j,i [Fk'-i Fi'];

at Ek'-l" _xj

is

Pk' - I, j,i L 1

at

is

at

is

Ek' ' _xj

Pk',j,i'

Ek'' _xj

Pk', j,i'+l

between X i, and Xi,+l

= Pk, j,i [Fk'-I Fi'+l];

between Xi,_l and X i,

= Pk, j,i [Fk'Fi']; and

between X i, and Xi,+l

= Pk, j,i [Fk''Fi'+l]"

The only operation remaining to com-

plete the movement of the original element

for At is its distribution in u x. To per-

form this operation the Goudsmit-

Saunderson distribution [7,8] for multiple

scattering w_s modified to provide the

angular distribution of scattering refer-

enced to the X direction independent of

azimuthal angle,

_ 2_+1(UxlUi) = = 2
P

P_.(ui)Pl.(_ x)

where

G_(s) = 2_N/0 _

sin 8sd8 s

-- exp

(9)

_(es,S) [1-P_(cos es)]

(i0)

and Ux and Ui are the cosines of the polar

angles of scattering and incidence, re-

spectively, referenced to the X direction.

To utilize the modified angular distribu-

tion in the PSTE calculation, the proba-

bility density given in eq. (9) is eval-

uated in the followin 9 way. First the in-

terval -i_ u _i is divided into subinter-

vals in suc_ a manner that a grid line

lies in the middle of each interval. The

probability, therefore, of obtaining some

_x' in the interval Ub_Ux_Ua is given by

u a

Ub/ P(_xlUi)dUx = ½ (Ua-Ub)
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t[/oSj+½ exp G_')ds' P_(Ui )

_=i

Eq. (ii) is applied to all subintervals.

The probabilities generated in turn serve

as weighting functions for the apportion-

ment of the original transported element

in Ux.

Once every element in the phase space

has been operated upon as outlined above,

the stored results are tested against a set

of terminating criteria for the problem

being investigated. If these criteria are

satisfied the calculation is completed. If

not, another iteration is required. The

final result of the PSTE calculation is a

complete record of the time evolution of a

particle density distribution given as a

function of energy, direction and position.

Comparison of PSTE Calculations with Elec-

tron Monte Carlo and Experimental Results

To assess the validity of the results

provided by the PSTE method as applied to

electron transport, a comparison was made

with Monte Carlo calculations and experi-

mental results for a shielding problem

which considered a 1 MeV pulse of electrons

normally incident on a semi-infinite slab

of aluminum. Comparisons were made on the

basis of the different forms of published

Monte Carlo and experimental results for

this problem.

The first form of result compared is

the number transmission factor. This

factor, TN(X ), which provides the fraction

of incident electrons transmitted past X,

is defined by

E i 1 t

(' X/o/0/o
J (X,E, Ux,t' ) at 'dUxdE (12)

where the current J(X,E,ux, t ) is given by

J(X,E,_x,t) = O(X,E,_x,t)v(E)Ux, (13)

E i is the incident energy of the electrons

and t is the time required for the entire

pulse to essentially pass through the me-

dium. Comparison of the PSTE generated

number transmission curve with several

Monte Carlo and experimental results is

given in Figure 3. Penetration (X) in this

case is represented as the fraction of the

mean range traversed. The Monte Carlo re-

sults include calculations by Berger [9,10,

ii] which use continuous slowing down in

one case and straggling (energy loss fluc-

tuation) in the other. Also shown are

Monte Carlo calculations made by Perkins

[12] which include the effects of strag-

gling. The experimental points depicted

incl_de the results of experiments con-

ducted by Rester [13] for 1 MeV electrons.

since the number transmission curve plotted

as a function of the mean range traversed

is approximately independent of initial en-

ergy in the neighborhood of 1 MeV, the av-

erage results of Agu et al. [14] for ex-

periments conducted at energies below 1

MeV have also been used for comparison pur-

poses. The agreement exhibited in Figure 3

between the PSTE and the Monte Carlo and

experimental results is good. The PSTE

curve, as should be expected, falls below

the Monte Carlo and experimental results

which considered straggling effects since,

as mentioned before, this PSTE calculation

utilized the continuous slowing down ap-

proximation for energy degradation. Al-

though the experimental points of Rester

lie somewhat above the PSTE curve, it

should be noted that the PSTE values fall

within the range of experimental uncer-

tainty associated with these results.

-- PETE

x BERGER,CONTSLOWING DOWN

(MONTE CARLO)

+ BERGER,STRAG.(MONTE CARLO)

o PERKINS,(MONT£ CARLO)

AGU, AV£RAGES OF

EXP£RIMENTS

v RESTER, EXPERIMENT
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z
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0 o
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Figure 3 C_parison of a PSTE n_mber transmission c_ve with Monte Carlo and experi-

mental result, for a i _V pul=. of electrons .ormally incident on a =emi-

infinite slad of al_in_.
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Theenergy spectrumof transmitted
electrons producedby the PSTEcalculation
for the problemunder consideration is a
critical indication of agreementwith ex-
isting calculations andexperimental re-
sults. The energy spectrumTN(X,E) is re-
lated to the PSTEgenerated current by

1 t

TN(X,E) - bEAu X

J(X,E,_x,t')dt'dUx (14)

The shapes of PSTE energy spectra for

three different penetrations in terms of

fractions of the mean range are compared to

Monte Carlo and experimental results docu-

mented by Rester [13] in Figures 4 - 6.

The Monte Carlo calculations were performed

by Berger. Assuming that the total number

of particles present at each penetration

investigated is approximately the same for

the PSTE, Monte Carlo and experimental ex-

amples, the histograms in Figures 4 - 6

have been drawn on a scale relative to the

maximum of each distribution. In this way

it is possible to separate an examination

of the energy spectrum from other consid-

erations. In other words, it is only in-

tended here to investigate the relative

i i i I I I I
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Flg_e 5 comparison of the pSTE transmitted energy =pectr_ with Monte carlo and ex-
peri_ntal rlaults at approximately .4 _In range for a I MeV pul=* of elec-
trons no_alIy incldent on a semi-lnflnit, ,lab of al_in_.

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.5

0.2

0.I

o6

I I I I I I I I

-- 0,2 MEAN RANGE, 8ERGER
(MONTE CARLO)

--- 0.2 MEAN RANGE,RESTER
(EXPERIMENT)

_" 0.22 MEAN RANGE, PSTE

C

r-

o'_o_
' oI_o.'_o._0.1

ENERGY, MeV

J__-
I.O

Figure 4 C_parison of thl PST_ trlnlmittld ensrgy |_ctrum wlth Montl Clrlo and eX-
l_=l_ntR1 re=ultl st ipproxlmltely .2 _=n range for = 1 M=V pu1=l of slec-
iron| no_ally inc£dent _ a Joml-lnflnite =I_ of =lumlnum.

0, 8

ZD 0.7

0.6
>

_ 0.5

0.4

- I I I I I

-- 0.6 MEAN RANGE

(MONTE CARLO)
--- 0.6 MEAN RANGE

0.62 MEAN RANGE

1,0--

0,9 1rJIr

r J
I

r j

f

_J

_J
J

0.3 -

0.2

0.1

0 I 1

RESTE R (EXPERIMENT) I

PSTE

l

L-

I I I

0.1 0.2 0.3 0.4 0,5 0.6 0.7 0,8 0.9 I.O

ENERGY, MeV
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shapes of the different energy spectra and

not the total number of particles at a

specific penetration (this has been done in

the consideration of the number transmis-

sion factor). The good general agreement

between Monte Carlo and experimental re-

sults and the PSTE calculation is well il-

lustrated in Figures 4 - 6. For each pene-

tration the PSTE result agrees very well

with the Monte Carlo histogram. The agree-

ment is not as good when the PSTE results

are compared to the experimental values.

The largest discrepancy appears at .4 of

the mean range where the disparity between

the Monte Carlo and experimental results

• is the greatest.

I0 _ -J i r p i i J i i _ t i i , r i

+ ÷ +

.

+ 0.2 MEAN RANGE, BERGER

o O.2M_AN RANGE, RESTER

--0.22MEAN RANGE, F_TE

_" I L I I 1 I
I0 20 30 40 50 60 70 80 90

ANGLE, DEGREES

Figure 7 C_pari=on of the PSTE transmitted angular distribution with Monte Carlo and

experimental r_aultm at approximately .2 mean range for a 1 MeV pulse of

electrons normally incident on a seml-infinite slab of al_inum.
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0.

÷
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i°i;;71 1--0.4 MEAN RANGE, PSTE

I I I I I I I I
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ANGLE, DEGREES

Figure 8 COmparison of the PST_ transmitted angular distribution with Mont e carl o an d

experimentsl rssults at approximately .4 mean range for a i MeV pulse of
electrons no_ally incid,nt on a semi-infinite slab of al_in_.
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The angular distribution of transmit-

ted electrons produced by the PSTE calcula-

tion has also been compared to Monte Carlo

and experimental results. The angular dis-

tribution TN(X,_x) is defined by

E i

lj/TN(X,Ux) - _E_ x

0

J (X,E, _x' t' )dr 'dE

t

0

(15)

where 0 _ Ux_l° The shapes of the angular

distribution curves for the same three

penetrations used in the energy spectrum

investigation are compared in Figures 7 -

9. Again the curves are drawn on a scale

relative to the maximum of each distribu-

tion for the same reasons outlined in the

discussion of the energy spectrum. The

results used for comparison are Monte Carlo

calculations made by Berger and experiments

conducted by Rester, the data for both

beinq taken from publications authored by

Rester [13,15]. In general there is ac-

ceptable agreement between the PSTE re-

sults and the Monte Carlo and experimental

points. For all three penetrations the

PSTE curve agrees very well with the ex-

perimental values. The largest discrep-

ancy between the PSTE and Monte Carlo re-

sults occurs at the smallest and largest

penetrations considered. Interestingly

the greatest difference between the Monte

Carlo and experimental values also occurs

at these depths.
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current of about 3 2 x I012 elsctr_s per second.

Time Dependent Results

One of the more significant contribu-

tions of the PSTE method is the time de-

pendent results it provides. In Figures

i0 _ 12 plots of the time dependent trans-

mitted current Jx+(X,t) given by

E i 1

,+<x."-  .L:S f
o o

J(X,E,_x,t)duxdE (16)

for the problem in question are presented.

The penetrations considered are the same

as those examined for the energy spec-

trum and angular distribution. At the

small penetration (.22 mean range)

the transmitted current reaches a max-

mum very quickly and then decreases

rapidly with time. The intermediate pene-

tration (.4 mean range) results exhibit

much of the same behavior but the current

drops off at a slower rate as time in-

creases. At the largest penetration (.62

mean range) there is a more gradual build-

up to the maximum transmitted current

achieved and a less rapid decrease with

time than at the other penetrations. This

is probably because at this depth the elec-

trons are diffusing through medium and are

characterized by relatively broad energy

spectra and angular distributions.
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Another way of looking at the time

dependent results provided by the PSTE

method is illustrated in Figure 13. Here

the current as a function of position with

time as a parameter has been traced by the

computer. The time interval between plot-

ted iterations is approximately 3.2 x

10 -13 seconds. Essentially this figure

represents a picture of the time evolution

of the transmitted current in the aluminum

slab. At first the current builds up rap-

idly and declines rapidly as the electrons

enter the medium. There is also a signif-

icant reduction in the maximum transmitted

current from one iteration to the other.

At larger penetrations or at a later time,

however, the curves representing the dis-

tribution of the transmitted current as a

function of penetration become broader.

This is understandable due to the fact that

at later points in time the electrons are

diffusing through the medium and have broad

energy spectra and angular distributions.

This parallels the reasoning used to de-

scribe the shape of the transmitted cur-

rent curve as a function of time at the

largest penetration examined (.62 mean

range, Figure 12).

Advantaqes of the PSTE Method

One of the most attractive features

of the PSTE method is the comparatively

small amount of computer time it requires.

For example, the PSTE calculations dis-

cussed in this paper required approximately

ten minutes of computer time on the CDC

6600 computer at the Brookhaven National

Laboratory. This compares to a Monte

Carlo calculation for the same problem

which requires on the order of an hour or

more of computer time.

Another advantage of the PSTE method

is that it provides deterministic results.

This can be contrasted to the results of a

Monte Carlo calculation which have a sta-

tiscal uncertainty associated with them

dependent on the number of histories

sampled.

Finally, the pSTE method generates a

complete record of the time evolution of a

particle density distribution. As stated

previously, the authors are unaware of any

successful Monte Carlo attempts at provid-

ing time dependent results for charged

particle problems. It is the authors'

opinion that the PSTE method is ideally

suited for this application.
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